A CORRELATION BETWEEN THE CONFIGURATION AND INFRARED BAND INTENSITY OF THE CYANO GROUP IN THE FUSED CYCLOHEXANE RING SYSTEMS *'

W. Nogota, M. Yoshioka, M. Narisoda and H. Watanabe Shionogi Research Laboratory, Shionogi 8. Co., Ltd., Fukushima-ku, Osaka, Japan (Received 31 August 1964)

IN the course of our study on the hydrocyanation (1) of polycyclic α,β -unsaturated **ketones, we found that configurations of the introduced epimeric cyano groups are** closely correlated with the band intensities of the C^{IN} stretching vibration in the **infrared spectra. The present communication treats this correlation.**

The molecular extinction coefficient, ϵ , (2) and the wave number, ν , of a C=N **stretching vibration were carefully measured using a LiF prism in more than 30 pairs of** epimeric **polycyclic nitriles placed in a rigid conformation except for a few compounds.** In every **example, it was clearly observed that an equatorial cyano compound shows a higher CEN band intensity than an axial epimer, despite little fluctuation of the absorption maximum in both epimers. This relation can be easily seen from the values** *of* **the intensity ratio, E eq. /eax. ' in the last column in the table, where data of the representative pairs of epimeric nitriles are collected for more detailed discussion.** As to configurations of the cyano groups of angularly cyanated compounds (I - VIII), **which were mainly examined because of ready accessibility in this laboratory, it is *I**

3133

Angularly Substituted Polycyclic Compounds, XIII.

		cm^{-1} max.		ϵ $\left[\,c_{\beta}\text{-}c_{\gamma}\right]^{\,\sigma}$		
	Compound	e^{eq} (cis)	ax. $\underline{\text{(trans)}}^{\text{b}}$	eq. $\underline{\text{(cis)}}^{\text{b}}$	αх. Ъ, (trans)	ϵ_{eq} , ϵ_{ex}
Ť	5-cyanocholestane	2230	2228	55.9 $\lceil 2 \rceil$	38.9 1 D L	1.44
\mathbf{H}	5 -cyano- 3 , 3 -ethyl- enedioxycholestane	2235	2234	47.3 $\begin{bmatrix} 2 \end{bmatrix}$	32.9 $\begin{bmatrix} 1 \end{bmatrix}$	1,44
Ш	5-cyanocholestan-3-ol ^c	2232	2230	43.3 $\left[2 \right]$	29.5 \Box	1.47
IV	5-cyanocholestan-3-one	2236	2235	35.2 $\left[2\right]$	26.1 $\left\lceil \ \right\rceil$	1.35
V	5-cyano-17B-propio- nyloxyandrostan-3-one	2236	2234	32.8 $\lceil 2 \rceil$	23.8 (1)	1.38
VI	9-cyano-2-decalone	2238	2236	$32.9^{\rm d}$ $\lceil 2 \rceil$	18.6 $\begin{pmatrix} 0 & 1 \end{pmatrix}$	1,77
	VII 10a-cyano-7a-acetoxy- 4aβ Aba Baβ-perhydro- phenanthren-2-one	2237	2238	32.9 [2]	19.0 $\left\{ 0 \right\}$	1.74
	VIII 5-cyano-17B-acetoxy- estran-3-one	2238	2237	35.9 $\left\lfloor 2 \right\rfloor$	19.9 $\begin{pmatrix} 0 & i \end{pmatrix}$	1.80
1X	3-cyano-5a-cholestane	2242	2240	65.5 $\left\lceil 2 \right\rceil$	45.6 ${0}$	1.44
	۳۱۱,	Ŗ,	OR ₂	н		ÖΝ
	$1_{\infty}B_1 = R_2 = H$, $R_3 = CN$	V	$R_1 = CH_3$, $R_2 = COC_2H_5$		V ₁	Vli
\mathbf{H}	$R_1 = R_2 = C_1$, $R_3 = CN$ VIII $R_1 = H$, $R_2 = COCH_3$					
Ш IV	$R_1 = H_1 R_2 = O H_1^C R_3 = CN$ $R_1, R_2 = O, R_3 = CN$					
	$1 \times R_1 R_2 = \frac{H}{C_N}$, $R_3 = \alpha - H$					

Table. C=N Stretching Infrared Absorption Data for Typical Polycyclic Cyano Compounds in Chloroform Solution

^a The number of parallel C_B-C_y bond with respect to the cyano group. ^b Valid only
for angular cyano compounds. ^c The hydroxy group is axially oriented, ^d Despite of
the non-rigid ring system, the <u>cis</u>-VI exhi cis-compounds (cis-V, -VII and -VIII) with rigid structure.

clear that the cyano group in the A/B cis nitrile is equatorial to the B-ring whereas the group in the trons epimer is axial, os illustrated in Fig. 1. The values of the intensity ratios for the pairs of 5-cyano steroids (examples I-V), irrespective of the species of the substituents at C₃, fall into a narrow range of 1.35-1.47, although the ϵ values themselves are remarkably reduced for the C₃-oxygenated steroidal compounds **probably due to the negative inductive effect of the substituents. Furthermore, the intensity-configuration relation also holds for the pairs of the bi- and tricyclic cyono** compounds (examples VI and VII), as well as for the pair of the non-angular cyano **compound (example IX), os clearly shown in the table. It must be noted that, in the angular cyono compounds with rigid conformation** , **higher values of the intensity ratio, ranging from** I **.74-l .80, ore observed for the 19-norsteroid type compounds (examples VI, VII and VIII) os compared with the values of 1 .35-l .47 for the steroids (examples I-V).**

After unsuccessful attempts to explain the configuration-intensity relation, we reached o rather new theoretical interpretation (3). It has been demonstrated (4) that the integrated intensity of o fundamental infrared bond is proportional to the expression

$$
I_{i} = (\frac{\partial \mu x}{\partial Q_{i}})^{2} + (\frac{\partial \mu y}{\partial Q_{i}})^{2} + (\frac{\partial \mu z}{\partial Q_{i}})^{2} = [\frac{\partial \mu x}{\partial R_{k}}L_{k1}]^{2} + [\frac{\partial \mu y}{\partial R_{k}}L_{k1}]^{2} + [\frac{\partial \mu z}{\partial R_{k}}L_{k1}]^{2} + \cdots \cdots (i)
$$

in which $\mu_\mathrm{X'}$ μ_Y and μ_Z are components of the dipole moment along an appropria internal Cartesian coordinate, and Q₁ is the normal coordinate corresponding to the fundamental mode under discussion which is related to the internal coordinate R_k by the formula, $R_k = \sum_{i} L_{ki} Q_i$. The normal coordinate treatment for CCl₃CN (5) and CH₃CN (6) showed that the vibrational coordinates of C=Nstretching vibration largely **consist of the CEN bond axis q and its adjacent C-C bond axis** q' . **This statement** means that vibrational modes of the C=N stretching band in the present series of

compounds are localized on the C=N and its adjacent C-C bonds and that the values of $\frac{\partial \mu}{\partial R_L} L_{k,i}$ associated with the C=N stretching band are of no importance except for those of $(\frac{\partial H}{\partial q}L_{qi})$ and $(\frac{\partial H}{\partial q}L_{qi})$. When the C-C=N bond axis is taken as the x axis, the x components, $\left(\frac{\partial \mu_X}{\partial q}\right)$ and/or $\left(\frac{\partial \mu_X}{\partial q'}L_{q+i}\right)$, are of the largest value and the smaller y and z components almost cancel each other to become negligible as compared with the x components. Then the l_i for equatorial epimer reads as follows,

$$
I_{j} = I_{eq} = \left(\frac{\partial}{\partial q}(\mu_{CN} + \mu_{Ca} + 3 \cdot \frac{1}{3} \mu_{\alpha\beta})L_{qi} + \frac{\partial}{\partial q}(\mu_{CN} + \mu_{Ca} + 3 \cdot \frac{1}{3} \mu_{\alpha\beta})L_{qi}\right) + \frac{\partial}{\partial q}(\mu_{p} + \mu_{p} + \mu_{p
$$

where the suffixes of μ represent the notation of atoms in Fig. 1. It has been reported

steroids : $R = CH₃$

19-norsteroid type compounds : $R = H$

Fig. 1

that the C=N band intensity increases on passing from methyl cyanide to ethyl and n-propyl cyonide to arrive at a maximum value independent of the chain length (7). This indicates that the contributions from the C_{β} - C_{γ} bonds are not negligible.

We can derive a similar formula $i_{\alpha x}$, for the axial epimer in the same way. Considering the similarity in the molecular structure and the equality in the C=N band

frequency between axial and equatorial epimers, the values of Lq and Lq, in the formula for I_{eq.} may be set equal to those for I_{ax,} respectively. Therefore, $\frac{\partial}{\partial a}\psi_{CN} + \cdots$) L_{qi} + $\frac{\partial}{\partial a^i}\psi_{CN} + \cdots$) L_{q'l} in equation (ii) can be replaced by the common K for both I_{eq} , and I_{ax} . Postulating that the values of the nine derivatives, $\frac{\partial \mu_{\beta Y}}{\partial q^i}$, in the last parenthesis which probably originate in the inductive effect are **independent of the orientation of the p-y bonds with respect to the C-C=N bond, we** can simplify the equation by replacing the $\mu_{\beta\gamma}$ value with C-H bond moment, $\mu_{\rm CH}$, C-C bond moment, μ_{CC} . Then, the intensity ratio, I_{eq} , $/I_{ax}$, is given by I_{eq} , $[K + {\frac{3}{2}q}\psi_{CC} - \frac{1}{3}\mu_{CH})$ $I_{qi}i^{2}$, 8 2, $\frac{1}{2}$ \cdots

The value of $\frac{\partial}{\partial q}$, μ_{CC} – μ_{CH}) L_{q+i} / K can be estimated to be of sufficient magnitude for the observed ratio on the basis of the inductive effect expressed by $h_{C_n} = (\frac{1}{3})^n h_x$ in the **MO method (8). as will be diszusscd in a full paper. For 19-norsteroid type compounds we get feq./lax. = 1 + (16/3){&(pcc - ~CH)Lq'i/K~ *v.*.****.*~*.~ (iv)**

A comparison of the equation (iii) with (iv) affords an excellent explanation for the observation that the relative increments in intensity, $(\epsilon_{\text{eq}}/ \epsilon_{\text{dx}})$ -1, for the 19-nor**steroid type compounds are twice those for the steroids, as noted earlier.**

This theoretical treatment further leads to the conclusion that so far as the $\text{structural environments surrounding the C-CEN bond are almost equal, the increase in$ C \equiv N band intensities are governed mainly by the number of the C_{β} -C_y bonds parallel \overline{t} the \overline{C} and \overline{b} bond (bold line in Fig. 1). This is clearly demonstrated by comparison of **the observed values of the angular cyono keto compounds (IV, V, VI, VI! and Vlil).** Ihus, as can be seen from Fig. I and the table, the trans—19-norsteroid type compound (t<u>rans-</u>VI, --VII and --VIII) possessing no parallel ---C β -C γ bond show the lowest E value **of-18.6-19.9, the trans-steroids (trans-IV and -V) possessing one such a bond show the middle values of 23.8-26.1 and finally the cis-compounds of both 19-norsteroid type** compounds and steroids (cis-VI, -VII, -VIII, -IV and -V) possessing inherently two such **bonds show the highest E values of 32.8-35.9.**

We believe that this both empirically and theoretically established correlation between the configuration and the C=N band intensity is widely applicable for configurational assignment of the cyono group attached to a cyclohexone ring system, at least when the molecules of the cyano compounds are placed in o rigid conformation and the two stereoisomers are available. Further extension of this correlation to the cyano compounds with a non frozen conformation or to other functional groups than o cyano group is the next purpose of our investigation.

References

- 1. W.Nagata, M.Yoshioka and S.Hirai, <u>Tetrahedron Letters</u> No.11, 461 (1962
- **2.** Here ϵ was used instead of the integrated intensity because the half band widt was almost constant throughout the compounds examined and was of the same **value within the epimers.**
- **3. The theoretical treatment was carried wt mainly by H. W.**
- **4. E. 8. Wilson, Jr., J. C. Decius and P. C. Cross, Molecular Vibrations, p. 162. McGraw-Hill Book Co., inc., New York (1955).**
- **5. V.** P. Roshchupkin and E. M. Popov, <u>Opt. Spectry. IS</u>, IU9 (1963
- **6. E. M. Popov and V. P. Roshchupkin, Opt. Spectry. Supplement II, Molecular Spectroscopy, p. 166. Academy of Sciences of the USSR Press, Moscow (1963).**
- **7,** I. **P. Jesson and H. W. Thompson, Spectrochim. Acto l3,217 (1958).**
- **8. A. Streitwieser, Jr., Molecular Orbital Theory for Organic Chemists, p. 128 John Wiley & Sons, Inc., New York (1961).**